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Abstract. A fully self-consistent scheme based on the two-component density-functional 
theory and an embedded-cluster model within the framework of the discrete variational 
method has been developed for calculating positron states in solids. As an example, alu- 
minium is tested. The changes of the electronic structures and positron states for an alu- 
minium vacancy due to the electron-positron interaction are presented. The effects of the 
atomic relaxations on the positron annihilation characteristics are considered. The results 
are also compared with former calculations and the conventional scheme. 

1. Introduction 

The positron annihilation technique (PAT) has become a powerful tool for investigation 
of defects in solids (Hautojarvi 1979, Brandt and Dupasquier 1983). Many calculations 
on the positron annihilation characteristics of defects in solids have been done in the 
past few years (Puska and Nieminen 1983, Hansen et a1 1984, Puska 1987, Puska and 
Corbel 1988). In solids, the positrons and electrons of which a many-body system is 
composed move in an ionic potential. The electron-positron interaction changes the 
electronic structure of the solid. Hence the real positron annihilation characteristics of 
a defect cannot be directly deduced from its calculated electronic structure in the absence 
of the positron. It is clear that a fully self-consistent calculation for the system of 
electrons and positrons is required. The two-component density-functional theory (DFT) 
(Nieminen 1983, Chakraborty and Siege1 1983) provides the facility needed. 

Using the two-component DFT, Nieminen et aL(1985) and Boronski and Nieminen 
(1986) calculated the positron annihilation characteristics of vacancies in simple metals, 
and carefully studied the distorting effect of the localised positron on the electron states 
in its vicinity and the form of the electron-positron correlation energy and potential as 
a function of electron and positron densities. In their calculation, the effect of the ion 
cores of the lattice is neglected, and the vacancy is represented by a spherical hole in a 
uniform background of positive charge. Their method is inadequate for calculations of 
positron annihilation characteristics and electronic structures of atomic defects in non- 
simple metals, alloys and semiconductors. Therefore, new methods for the calculations 
are needed in which the effects of the ion cores can be included explicitly and which can 
be used for a wide variety of materials and more complicated defect geometries. 
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In this paper a fully self-consistent scheme for calculating positron annihilation 
characteristics is developed, based on the two-component DFT and an embedded-cluster 
model (Ellis et af  1979, Umrigar and Ellis 1980) within the framework of the discrete 
variational method (Ellis and Painter 1970, Rosin et a1 1976, Delley and Ellis 1982). 
Aluminium is chosen as a test case because a lot of relevant experimental data and results 
of former calculations are available and can be used for comparison with our calculations, 
The change of the electronic structure and the positron annihilation characteristics of a 
monovacancy in aluminium due to the electron-positron interaction are presented. 
The effects of the atomic relaxation around the vacancy of the positron annihilation 
characteristics are considered. The results are compared with those of former cal- 
culations and the conventional scheme in which the electron density is first determined 
without the influence of the positron and then the positron wavefunction is obtained by 
solving the Schrodinger equation only once. 

2. The methods 

In the two-component DFT the total energy of the system of interacting electrons and 
positrons moving in the ionic potential of a solid can be written as a functional of the 
electron (n- )  and positron (n’) densities (Nieminen 1983), 

n - (r)n + (r’) 
/ r  - r’/  

+ EZ-P[n-, n + ]  - 1 d r  1 dr’ 

where F [ n ]  is the one-component functional, Zj the ith ionic charge, Ri the ith ionic 
position and EE-p[n-, n + ]  the electron-positron correlation energy functional. Seeking 
the variational minimum of E[n- ,  n+] with respect to both n- and n+ leads to a set of 
one-particle equations for electrons and positrons (in atomic units), 

and 

with 

n-(r)  = 
i(0cc) 

V W 2  n+(r)  = C IVl(r>l2 (4) 
i(0cc) 

where Ex,[n] is the exchange-correlation energy functional and $ the Coulomb potential, 

n-(r’) - n+(r’)  zi 
@(.) = / dr’ -E- Ir-r’i Ir - RjI’ 

In equation (4) the sums go over all the occupied states. 
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In the local-density approximation (LDA), 

(6) 

and 

EE-P[n-, n + ]  = d r n + (r).$P ( n  - (I-), n + ( r ) )  (7) 

where E,, is the exchange-correlation energy per particle in a one-component gas (Kohn 
and Sham 1965), which in the present paper is of the form 

where a is the Kohn-Sham-Slater exchange parameter, and .$-P(n-(I-), n + ( r ) )  is the 
electron-positron correlation energy per positron, for which in the present paper an 
interpolation formula furnished by Boronski and Nieminen (1986) is used. 

The wavefunctions of electron are expanded in a linear combination of symmetry 
orbitals 9,: 

where the qj(r)  are the symmetrised combinations of numerical atomic wavefunctions. 
The wavefunctions q;  of positrons are expanded in a linear combination of Gaussian 

functions: 

q~ (r)  = 2 C J ~ , X : Y Y Z ;  exp[-pfmn(X: + Y: + z:)]. (10) 
1.k  1 m , n  

Here XI  = x - A , ,  Y, = y - B,, Z, = z - 0, where A,, B,, 0, are the coordinates of 
trapping centres of positrons in imperfect solids or the coordinates of the positions of 
the lowest potential for positrons (generally interstitial positions) in perfect solids, and 
Pfmn is the Gaussian parameter optimised. 

The expansion coefficients C, and Cjzn are obtained by solving the secular equation 

( H  - ES)C = 0. (11) 
The Hamiltonian matrix H and the overlap matrix S are obtained in the discrete vari- 
ational method as a weighted sum over a set of sample points (Ellis and Painter 1970, 
RosCn et a1 1976). 

Full self-consistency is obtained as follows. At first, the secular equation of electrons 
is solved in the situation in which the effect of positrons on the electronic structure is 
neglected (n+ = 0, conventional scheme), and the electronic eigenvalues, Coulomb 
potential and electron density n- are determined. Then the secular equation of positrons 
is solved and the positron's eigenvalues and positron density n+ are obtained. The n- 
and n+ are input to equation (2) and the secular equations of electrons and positrons are 
again solved in turn; the new n- and n+ are obtained. The procedure is repeated until 
self-consistency is obtained. 

In the present paper, we have assumed that the wavefunctions of electrons and 
positrons are centred on a finite cluster of atoms taken from the infinite solid. The rest 
of the solid manifests its presence by providing a crystal field in which the cluster is 
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embedded and which can approximately be simulated by the self-consistent potential 
provided by hundreds of crystal atoms which occupy the lattice sites of several shells of 
neighbours to the cluster. A one-parameter pseudopotential (Ellis et a1 1979) is used to 
truncate exterior wells to prevent electron transfer from the cluster into filled exterior 
states. Detailed discussions about the embedded-cluster technique have been given by 
Ellis et a1 (1979) and Umrigar and Ellis (1980). 

The positron annihilation rate is proportional to the overlap of electron and positron 
densities. In the two-component formalism it can be written as 

A = n r i c  drn+(r)n-(r)g (0; n + ,  n - )  I 
where ro is the classical electron radius, c the light speed andg(0; n+, n-) is the electron- 
positron pair correlation function evaluated at the positron, which describes enhance- 
ment effects in the electron-positron system. An interpolation formula presented by 
Boronski and Nieminen (1986) forg(0; n+, n-) is used in this paper. In the conventional 
approach, equation (12) becomes 

A = n r i c  drn+(r)n-(r)T(n-(r))  I 
where T(n-) is the n+ -+ 0 limit of the pair correlation g(0; n+, n-) and is called the 
electron-density enhancement at the positron position, which can approximately take 
the Brandt-Reinheimer expression (Brandt and Reinheimer 1971) 

T(n-) = 1 + ( r? (n - )  + 10)/6 r,(n-) = (3 /47~n-)~’~ ,  (14) 

3. Application 

We have applied the fully self-consistent scheme to calculate the electronic structures 
and positron states in aluminium clusters. The perfect A1 cluster consisted of 43 atoms 
including third neighbours of a central atom and having Oh symmetry characteristic of 
bulk FCC Al, in which the nearest-neighbour AI-A1 distance was taken as that in bulk 
aluminium, namely 5.4094 Bohr. The vacancy was represented by the absence of the 
central atom in the perfect A1 cluster. The external crystal potential was given by 98 
atoms, which occupied the lattice sites of five shells of neighbours to the A1 cluster. The 
exchange parameter for electrons was chosen to be 0.72853 (Schwarz 1972). 

A positron can interact coulombically with other positrons and electrons but not with 
itself, In the following calculations, we have only taken into account the case of one 
positron trapped at a vacancy in the A1 cluster. Therefore, in equation (3) we subtracted 
the positron self-interaction terms 

n+(r ’ )  6E,,[n+] 
/ r  - r’/ 6n+(r) 

I dr’ - + 

The calculations were carried out for the following three cases: (i) the perfect cluster, 
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Table 1. Orbital eigenvalues E (Hartree) for aluminium clusters in three cases (see text). The 
levels are labelled according to the irreducible representations of the Oh point group. Only 
the occupied levels of the valence electrons are shown. 

Case (i) Case ( i i )  Case (iii) 

Level - E  Level - E  Level - E  

0.4637 11-41, 
0.4130 19T1, 
0.3617 13E, 
0.3592 1 ~ T z ,  
0.3556 6A2u 
0.3133 12-41, 
0.3080 20Tl" 
0.2981 12T2" 
0.2971 21T," 
0.2560 16T2, 
0.2488 13-41, 
0.2481 10Tl, 

0.2249 17T2, 

0.2130 7Eu 
0.2022 22Tl" 
0.1907 7-42, 
0.1820 23T1, 
0.1796 13T2" 
0.1661 14-41, 
0.1550 24Tl, 
0.1387 147-2, 
0.1358 11Tl, 
0.1310 18T2, 
0.1293 25T1, 
0.1105 19T2, 

0.2259 14E, 

0.2189 15E, 

0.4373 11-4tg 
0.4051 19T1, 
0.3598 13E, 
0.3564 15T2, 
0.3140 12-41, 
0.3129 6-42, 
0.3082 20Tl" 
0.2943 ZITI" 
0.2804 12T2, 
0.2552 16T2, 
0.2494 13-41, 
0.2487 10T1, 
0.2247 17T2, 
0.2220 14E, 
0.2159 15E, 
0.2023 7Eu 
0.1887 22T1, 
0.1848 7-42, 
0.1794 23T1, 
0.1654 14-41, 
0.1598 13T2, 
0.1486 24T1, 
0.1367 14T2, 
0.1305 1 IT,, 
0.1294 18T2, 
0.1167 25T1, 
0.1119 19T2, 

0.6220 
0.5812 
0.5286 
0.5264 
0.4975 
0.4819 
0.4753 
0.4615 
0.4606 
0.4222 
0.4161 
0.4141 
0.3944 
0.3932 
0.3843 
0.3656 
0.3566 
0.3505 
0.3434 
0.3348 
0.3285 
0.3195 
0.3038 
0.2943 
0.2931 
0.2888 
0.2771 

(ii) the cluster with a vacancy and (iii) the cluster with a vacancy and a positron. The 
occupied orbital eigenvalues and the total density of states (with Lorentzian width 
parameter 0.015 Hartree) for the clusters are shown, respectively, in table 1 and figure 
1. With the multiple-scattering X ,  method Iyakutti et a1 (1983) calculated the electronic 
structures of isolated clusters consisting of only 13 A1 atoms, 12 A1 atoms plus a vacancy 
and 12 A1 atoms plus a vacancy and a positron. In their calculation, the core orbitals of 
the atoms were frozen, the effect of the electron-positron correlation on the electronic 
structure was omitted and the presence of a positron in the cluster was only represented 
by an extra positive charge. When the presence of a positron is considered in the cluster 
with a vacancy, in their calculated results the energy levels were shifted up enormously 
with respect to the vacancy levels; but in our results the levels were pushed down. This 
difference may be mainly due to whether the core orbitals of the atoms were frozen or 
not. Indeed, when the Is, 2s and 2p orbitals of A1 atoms were frozen in our calculations, 
the results showed that the levels were shifted up for the presence of a positron in the 
cluster with a vacancy. However, the positron lifetimes were insensitive to freezing core 
orbitals. Freezing Is, 2s and 2p orbitals only made the positron lifetime at the A1 vacancy 
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f i i l  

L 

Figure 1. Total density of states (with Lorentzian 
width parameter 0.015 Hartree) for the clusters in 
cases (i) perfect, (ii) with a vacancy and (iii) with 

0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 a vacancy and a positron. The arrows indicate the 
Fermi level. Energy I Hortree 1 

Table 2. Orbital populations for aluminium clusters in the two cases (ii) with a vacancy and 
(iii) with a vacancy and a positron. ( l) ,  ( 2 )  and (3) indicate the first-, second- and third- 
neighbour atoms of the vacancy. 

Is 2,0000 2.0000 2.0000 2.0000 2.0000 2.0000 
2s 1.9991 1.9992 1.9993 1.9991 1.9992 1.9993 
2p 5.9973 5.9978 5.9987 5.9975 5.9978 5.9987 
3s 1.4221 1.3843 1.6037 1.4574 1.3800 1.6056 
3p 1.4670 1.5658 1.4688 1.5812 1.5684 1.3923 

increase 4 ps from 236 to 240 ps and the positron binding energy decrease 0.24 eV from 
2.45 to 2.21 eV. 

In table 2, the Mulliken orbital populations for the cluster with a vacancy and with a 
vacancy and a positron are listed, which show the electronic transfer caused by the 
positron-electron interaction. The electron-positron interaction leads to the increase 
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0 2 4 6 0  2 4 0  2 4 6 0 10 
r ( a u )  

Figure 2. Electron density in the AI cluster with a vacancy. Full curves show the result of the 
two-component DFT scheme; broken curves are for the conventional scheme. The density is 
given in units of the average electron density no = 0.027 au. 

of the valence-orbital populations of the first-neighbour atoms of the vacancy. However, 
the core-orbital populations are not affected by the positron, as seen in table 2. 

Figure 2 shows the self-consistent electron density for a vacancy in the cluster with 
and without a positron present. The increase of electron density at the centre of the 
vacancy with a positron is only order of magnitude, which is so small that one can 
hardly see the increase in figure 2. This result is similar to Iyakutti’s result (Iyakutti et a1 
1983). However, the calculation of Boronski and Nieminen (1986) showed a large 
increase of electron density at the centre of the vacancy with a positron. This may be 
due to the different methods of calculation. In the jellium model, the lattice effects are 
neglected. In our calculation, owing to the attraction of the ion cores of the lattice, it is 
difficult for one positron to attract the far electrons into the centre of the vacancy, and 
near the centre of the vacancy the electron density is very small. Therefore, at the centre 
of the vacancy the electron density cannot increase largely. In figure 2, one can see the 
apparent increase away from the centre of the vacancy. A numerical calculation has 
been done for the change integrated over an r = 4.8 (au) spherical space ( r  = 
(2? + Y2 + .Z2)lI2; the centre of the vacancy is at X =  0, Y = 0, Z = 0). Some 7147 
sample points and cubic meshes (du = 0.4 X 0.4 x 0.4 (au)) were taken in the space. 
The change of the charge in the space is 1.099e, which is approximately equal to the total 
screening charge. 

The effective potentials for electrons in both the two-component and the con- 
ventional approaches are presented in figure 3. One can see that in the two-component 
scheme the scattering potential is weaker. This result is in agreement with that of 
Boronski and Nieminen (1986). 

The results for the positron effective potential and the positron density are shown in 
figure 4. One can see that in the two-component approach the trapping potential for the 
positron is stronger and the positron is more localised. Table 3 shows that the positron 
binding energy is larger in the two-component scheme. 
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Figure 3. Effective scattering potential for electrons in the AI cluster with a vacancy. 
Full curves show the result of the two-component DFT scheme; broken curves are for the 
conventional scheme. 
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Figure 4. Positron effective potential and positron density in the AI cluster with a vacancy. 
Full curves show the result of the two-component DFT scheme; broken curves are for 
the conventional scheme. 

In the above calculations, the positron self-interaction terms in equation (3) have 
been omitted. In order to compare our results with those of Boronski and Nieminen 
(1986), the positron self-interaction terms in equation (3) have been retained in the 
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Table3. Positronlifetimes and bindingenergiesfor Alvacancy. (1) indicates theconventional 
scheme, (2) the fully self-consistent scheme, which omits the positron self-interaction terms 
in equation (3), and (3) the fully self-consistent scheme, which retains the positron self- 
interaction terms in equation (3). 

Lifetime Binding energy 
( PS) (ev)  

(1) 244 2.11 
(2) 236 2.45 
(3) 242 1.93 

0 2 4 6 0  2 4 0  2 4 6 8 1 0 1 2  
r l ou  ) 

Figure 5. Positron effective potential and positron density in the A1 cluster with a vacancy. 
Full curves show the result of the two-component DFT scheme including the positron self- 
interaction terms in equation (3); broken curves are for the two-component DFT scheme not 
including the positron self-interaction terms in equation (3). 

following calculations. For the case of a positron trapped at a vacancy in the A1 cluster, 
the positron self-exchange-correlation potential takes that for a fully spin-polarised 
system since the single positron has a well defined spin. Figure 5 shows the results for 
the positron effective potential and the positron density. After adding the positron self- 
interaction terms in equation (3), the positron binding energy is a little less than that in 
the conventional scheme and the lifetime becomes larger, as seen in table 3. However, 
our calculation showed that the change of the electronic structure was small when the 
positron self-interaction was considered. The calculation gives the positron lifetime r b  = 
165 ps for bulk aluminium. 
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Table 4. Positron lifetimes and binding energies for AI vacancy with different inward 
relaxations of 12 nearest-neighbour atoms relative to the vacancy centre. R is the distance 
from nearest-neighbour atom to the vacancy centre and minus sign denotes inwards relax- 
ation. 

Lifetime Binding energy 
R (%I (PSI (ev)  

-1.00 239 1.75 
-2.00 234 1.56 
-3.00 228 1.37 

In table 4 we show the positron lifetimes and binding energies for atomic relaxations. 
Table 4 shows that the inward relaxations reduce the lifetimes and binding energies, 
which are sensitive to nearest-neighbour relaxations. The 1 % relaxation yields the 
vacancylifetime239 ps, whichisin good agreement with the recent experiment (Jackman 
et a1 1987). 

4. Conclusions 

The theoretical method presented here for calculating positron annihilation charac- 
teristics is of general applicability and can be applied to transition metals, alloys, 
semiconductors and compounds. This method has the additional advantage of treating 
atomic relaxations and complicated defect geometries. 

The calculations show that the electron-positron interaction changes the electron 
energy levels and density of state, and causes the electron density and the positron 
density to be redistributed; however, the positron lifetimes are not sensitive to the 
calculation methods. Since the fully self-consistent calculations are time-consuming, 
these are not very necessary only for the determination of the lifetimes, but if more 
detailed information regarding defects is desired, there seems to be no present alterna- 
tive to the time-consuming calculations. 
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